Thema 10:Approximationsgüte von Wavelets

Proseminar Wavelets und Bilddatenkompression
Universität Bonn, WS 2003/2004
Prof. Scherer, Prof. Weber

Gereon Schüller

email@gereon.de

5. Januar 2004

1 – Wichtige Fragen über Wavelets

Wichtige Fragen über Wavelets

- Hat die dilation equation eine Lösung mit endlicher Energie?
- Konvergiert der Kaskadenalgorithmus gegen diese Lösung?
- \Rightarrow Antworten darauf durch bestimmte Filterkoeffizienten h(k)
- \Rightarrow Antworten sind alle "Ja"

Fundamentaloperatoren

$$M=(\downarrow 2)2H \text{ und } T=(\downarrow 2HH^T)$$

- $\bullet~M=$ Filtermatrix H (Toeplitz-Matrix) downgesampelt (Zeilen gelöscht) und mit 2 multipliziert
- M ist ein dezimierter Lowpassfilter, bei dem sich die Koeffizienten h(k) notwendigerweise zu 1 addieren, d.h. $H(0)=\sum h(k)=1$
- ullet Auch symmetrisches Produkt HH^T ist Toeplitz-Matrix
 - Einträge sind die Koeffizienten in $|H(\omega)|^2 = |\sum h(k)e^{-ikw}|^2$
 - Zeilenshift $(\downarrow 2)$
- Im Frequenzbereich erzeugt das Downsampling ein Aliasing wegen der Modulation mit π :

$$(Mf)(\omega)=H\left(\frac{\omega}{2}\right)f\left(\frac{\omega}{2}\right)+H\left(\frac{\omega}{2}+\pi\right)f\left(\frac{\omega}{2}+\pi\right)$$
 wobei $(Mf)(i)=\sum_{j}m(i-j)f(j)$

2 - Fundamentaloperatoren

ullet ebenso beim Transferoperator T:

$$(Tf)(\omega) = \left| H\left(\frac{\omega}{2}\right) \right|^2 f\left(\frac{\omega}{2}\right) + \left| H\left(\frac{\omega}{2} + \pi\right) \right|^2 f\left(\frac{\omega}{2} + \pi\right)$$

- ullet Wichtig: Eigenschaften von M und T, denn Iteration des Lowpass-filters involviert deren Potenzen
- \bullet Der Transferoperator T ist einfacher als M , da $|H(\omega)|^2 \geq 0$ und HH^T positiv definit

2 - Fundamentaloperatoren

ullet Nach i Iterationen $\phi^{(0...i)}(t)$ sind die inneren Produkte

$$a^{(i)}(k) = \int_{-\infty}^{\infty} \phi^{(i)}(t)\phi^{(i)}(t+k)dt$$

Schlüsselpunkt: $Ta^{(i)}(k)$ liefert inneres Produkt $a^{(i+1)}(k)$

- \Rightarrow Potenzen von T (und deshalb Eigenwerte von T) bestimmen, ob der Kaskadenalgorithmus konvergiert (über euklidische/ L^2 -Norm)
 - ullet Eigenschaften von T geben Antworten über quadratische Mittelwerte

Wavelettheorie

Folgende Aussagen gelten:

- 1. Kombination von $\phi(t-k)$ kann Polynome bis Grad p exakt produzieren, wenn M Eigenwerte $1,\frac12,\dots,(\frac12)^{p-1}$ hat
- 2. Sind die Wavelets orthogonal zu $1,\ldots,t^{p-1}\Rightarrow p$ Nullmomente *(=vanishing Moments)* ^a
- 3. That Eigenwerte $1,\ldots,(\frac{1}{2})^{2p-1}$ wenn M wie in 1
- 4. Der Kaskadenalgorithmus konvergiert auf $\phi(t)$ in L^2 -Norm wenn die anderen Eigenwerte von T= $|\lambda| < 1$ sind
- 5. Wenn $\phi(t)$ und w(t) s Ableitungen haben, dann sind die Eigenwerte von $\mathbf{T}=|\lambda|\leq 4^{-s}$
- $\bullet \ \, {\rm 1.} \to {\rm neue} \ {\rm Form} \ {\rm von} \ A_p \Leftrightarrow p \ {\rm Nullen} \ {\rm bei} \ \pi \ ({\rm aus} \ {\rm Faktor} \ (1+z^{-1})^p \ {\rm in} \ H(z))$
- In 4 ist s nicht zwingend ganzzahlig, aber wir beschränken uns darauf
- ullet Für T wird die Ordnung von Null 2p

aDef: Das p-te Moment einer stetigen Funktion auf [a,b] ist definiert als Größe $\int_a^b t^p f(t) dt$

Approximationsgüte

ullet Bei Anwendung von Wavelets wird f(t) auf Raum V_j projiziert, j gibt die Zeitskala $\Delta t=rac{1}{2j}$ an. Skalierungsfunktionen sind dann $2^{j/2}\phi(2^jt)$ und ihre Translationen mit $k\Delta t$



4 – Approximationsgüte

• Die Projektion ist dann $P(j) = f_j(t)$ und ist eine Kombination der Basisfunktionen:

$$\forall j : f_j(t) = \sum_{k=-\infty}^{\infty} a_{jk} 2^{j/2} \phi(2^j t - k)$$

- Wavelets splitten Funktion in unterschiedliche Skalen auf (Multiresolution)
- Details werden auf Level j aufgelöst, der grobe Durchschnitt auf Level 0:

$$V_j = V_0 \oplus W_0 \oplus W_1 \oplus W_2 \oplus \dots W_{j-1}$$

W=Waveleträume

Der Waveletraum

$$V_{j} = V_{0} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \dots W_{j-1}$$

 $\Leftrightarrow f_{j}(t) = \sum_{k} a_{0k} \phi(t-k) + \sum_{k} b_{0k} w(t-k) + \sum_{k} b_{1k} 2^{1/2} w(2t-k) + \dots$

- j muss abgewogen werden: Qualität gegen Kosten
- Datenrate verdoppelt sich pro Level: 2 mal so viele Basisfunktionen, 2 mal so viele Koeffizienten
- Güte ist abhängig von
 - f(t) gegeben
 - Koeffizienten des Filters wählbar
- Fehlerabschätung typisch für Numerik:

$$||f(t) - f_j(t)|| \approx C(\Delta t)^p ||f^{(p)}(t)||$$

ullet C und p hängen von unserer Wahl von h(k) ab, diese legt dann $\phi(t)$ und somit die Unterräume fest.

Auswirkungen dieser Abschätzung:

- Jeder Levelschritt dividiert Fehler durch 2^p
- $\Rightarrow p$ ist kritisch, d.h. wo ist ein guter Wert asymptotisch erreicht?
 - C ist weniger wichtig, aber für Wavelets mehr als für Splines
 - ullet Der globale Fehler kann lokal abgeschätzt werden, wenn $f^{(p)}(t)$ global klein ist und plötzlich ihr Verhalten ändert
 - → Wavelets bieten dafür die "anpassbaren Maschen", später dazu mehr!
 - → Verfeinerung um Faktor 2, aber leider Overhead (Abwägung)

Beweis der Fehlerabschätzung Sei g eine beliebige Funktion mit $g \in V_j$ und P(f) eine lineare Projektion mit $P(f) = f_j$, dann setzen wir an:

$$f(t) - f_j(t) = f(t) - g(t) + g(t) - f(t)$$

da g in V_j liegt, ist $P_j(g) = g$ und wir können umformen:

$$f(t) - f_j(t) = (f - g)(t) + P_j(g - f)(t)$$

und unter euklidischer Norm ergibt sich

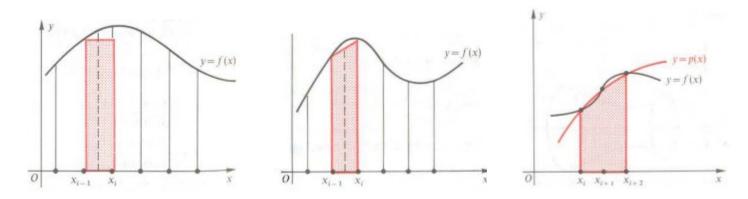
$$||f - f_j||_2 \le ||f - g|| + ||P_j(f - g)|| \le ||f - g||_2$$

g ist (lokal) wie ein Polynom weil $g \in V_j$. Somit entwickeln wir die Taylorreihe

$$f(t) - g(t) = \left| f(t) - \left[f(t_0) + \ldots + \frac{(t - t_o)^{p-1}}{(p-1)!} f^{(p-1)}(t_0) \right] \right| = \text{Restglied}$$

Anpassung der Potenz ist ein typisches Problem der numerischen Analysis,
 z.B. bei Integralen:

$$\int_0^1 f(t)dt = \sum c_k f(t_k) \approx \begin{cases} (\Delta t)^1 & \text{Rechteckregel} \\ (\Delta t)^2 & \text{Trapezregel} \\ (\Delta t)^4 & \text{Simpsonsregel} \end{cases}$$



• Immer die Idee: Beachtet die Polynome

5 - Der Waveletraum

- Jede Funktion ist lokal einem Polynom ähnlich (Idee der Taylor-Reihe)
- p gibt den Grad des Polynoms an, dass den ersten Fehler ergibt
- ⇒ Wir werden die Güte durch Berechnung mit Polynomen bestimmen
 - ullet VORSICHT: Im Digitalbereich keine Funktion als Eingabe, sondern ein diskreter Vektor, der durch Sampling von f(t) entstanden sein kann
 - direkte Übernahme kann die Projektion verfälschen
 - mehr dazu am Ende!

Bestimmung der Güte

- \bullet Die Näherung besteht aus Translationen der mitunter komplizierten Basisfunktionen $\phi(t)$ und w(t)
 - $\rightarrow\,$ Die Berechnung von p geht stets auf die Koeffizienten h(k) des Lowpassfilters zurück
 - ightarrow Wir können p aus h(k) oder $H(\omega)$ bestimmen
 - ightarrow Die exakte Projektion auf V_0 ist unmöglich. Wir vermeiden eine solche Betrachtungsweise durch das Betrachten der Projektion $P_j \in V_0$ mit j genügend groß

Die Bedingung A_p

SATZ: Die Güte ist p wenn eine der folgenden äquivalenten Formulierungen gilt

(i)
$$\sum_{n=0}^{N} (-1)^n n^j h(n) = 0, j = 0, 1, \dots, p-1$$
 (Summenregel)

(ii)
$$p$$
 Nullen bei π : $H(\omega)=(\frac{1+e^{-i\omega}}{2})^pQ(\omega)$ und $H(z)=(\frac{1+z^{-1}}{2})^pQ(z)$

(iii) p Eigenwerte der Matrix $M=(\downarrow 2)2H=\{2h(2i-j)\}$:

$$M\phi^j=(rac{1}{2})^j\phi^{(j)}$$
für $j=0,1,\dots,p-1$

Beweis: $i) \iff ii$

Substitution $\omega=\pi$ in der Frequenzantwort und dann ableiten:

$$\sum h(n)e^{-in\pi}=h(0)-h(1)+h(2)-\ldots\Leftrightarrow H=0 \text{ bei }\omega=\pi$$

$$\sum h(n)(-in)e^{-in\pi}=-i(0h(0)-1h(1)+2h(2)-\ldots\Leftrightarrow H'=0 \text{ bei }\omega=\pi$$
 analog für höhere Ordnungen

Beweis A_p – Eigenwerte

Angenommen $H(\omega)$ ist p-te Potenz von $\frac{1}{2}(1+e^{-i\omega})$

- $\Rightarrow p$ Nullen bei $\pi, Q = 1$
- \Rightarrow Dann sind *alle* Eigenwerte Potenzen von $\frac{1}{2}$!

Beispiele für p=2,3,4 die von Doubleshifts von 1,2,1 ; 1,3,3,1 und 1,4,6,4,1 kommen

$$m_{2} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \qquad m_{3} = \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix} \qquad m_{4} = \frac{1}{8} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 6 & 4 & 1 & 0 \\ 1 & 4 & 6 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$\lambda = 1; \frac{1}{2} : \frac{1}{4} \qquad \lambda = 1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}$$

- ullet Die N imes N-Matrix m hat die Einträge 2h(2i-j) für $i,j=,1,\dots,N-1$
- ullet m ist eine Submatrix von der unendlichen Matrix M
- ullet Die Eigenwerte von M sind die selben wie bei m, wobei die Eigenvektoren mit 0 in beide Richtungen erweitert sind

Wann hat m diese Eigenwerte?

Um dies zu zeigen, erhöhen wir die Zahl der Nullen bei π Schritt für Schritt in der z-Domain.

 $\bullet\,$ jede neue Null bei z=1 kommt dann wieder von einer Multiplikation mit $(\frac{1+z^{-1}}{2})$

Wir zeigen:

- 1. Neue Eigenwerte von m sind die Hälfte der alten Eigenwerte
- 2. Es gibt den neuen zusätzlichen Eigenwert $\lambda=1$ mit linkem Eigenvektor $e_0=\left[\begin{array}{ccc}1&1&\cdots&1\end{array}\right]$, der rechte Eigenvektor gibt den Wert von $\phi_{neu}(n)$ an (diskret).
- 3. Die neuen Eigenvektoren sind die (inneren) Differenzen der alten Eigenvektoren x_{alt} :

$$x_{neu} = x_{alt}(k) - x_{alt}(k-1) \text{ und } X_{neu}(z) = (1-z^{-1})X_{alt}(z)$$

Beweis:

Voraussetzungen:

$$z = e^{i\omega}$$

$$H(z)X(z) + H(-z)X(-z) = \sum_{l} a_{l}z^{l} + \sum_{l} a_{l}z^{-l}$$

$$H(z)X(z) = \sum_{l} z^{l} \sum_{j} h(l-j)x(j) \equiv \sum_{l} a_{l}z^{l}$$

$$mx = \lambda x \Leftrightarrow H(z)X(z) + H(-z)X(-z) = \lambda X(z^2)$$

- $\bullet\,$ Das neue H(z) erhält den Extrafaktor $\left(\frac{1+z^{-1}}{2}\right)$
- Das neue X(z) erhält den Extrafaktor $(1-z^{-1})$:

$$\left(\frac{1+z^{-1}}{2}\right)H(z)(1-z^{-1})X(z) + \left(\frac{1-z^{-1}}{2}\right)H(-z)(1+z^{-1})X(-z) = \frac{1}{2}\lambda(1-z^{-2})X(z^2)$$

 \bullet Der ganze Beweis liegt in $\left(\frac{1+z^{-1}}{2}\right)(1-z^{-1})=\frac{1}{2}(1-z^{-2})$

Linke Eigenvektoren

- Auch von Interesse sind die linken Eigenvektoren $y:ym=\lambda x$
- Es gilt $(ym)^T = \lambda y^T = m^T y^T$
- Für die speziellen Eigenwerte $\lambda=1,\frac{1}{2},\frac{1}{4}$ sind die Eigenvektoren diskrete Polynome, d.h. die Kombinationen von e_0,e_1,\ldots,e_k :

$$e_0 = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}, e_1 = \begin{bmatrix} 0 & 1 & \dots & N-1 \end{bmatrix}, e_k = \begin{bmatrix} 0^k & 1^k & \dots & (N-1)^k \end{bmatrix}$$

• insbesondere $e_0 = me_0$

9 – Linke Eigenvektoren

ullet Besonders interessant: Eigenvektor $y_0 = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$ für $\lambda = 1$:

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} 2h(0) \\ 2h(2) & 2h(1) & 2h(0) \\ 2h(3) & 2h(2) & \dots \\ \vdots & \vdots & \vdots & \dots \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}$$

$$\Leftrightarrow \sum 2h(2k) = 1 \land \sum 2h(2k+1) = 1$$

äquivalent zur ersten Summenregel und zur Lowpassregel

$$h(0) - h(1) + \ldots = 0$$
 bzw. $h(0) + h(1) + \ldots = 1$

9 – Linke Eigenvektoren

Auch die linken Eigenvektoren kommen von den alten linken Eigenvektoren, summieren sich aber anstatt sich zu subtrahieren

Beweis: Wir betrachten die Eigenvektoren aber mit m^T unter $(\uparrow 2)$

- Noch interessant: Matrizen aus den linken Eigenvektoren sind die Inversen der rechten Eigenvektor-Matrizen ⇒ so genannte Biorthogonalität
- ullet Diagonalisierung $S^{-1}MS$ hat die rechten Eigenvektoren in den Spalten von S und die linken Eigenvektoren in Zeilen von S^{-1}

Unendliche Matrizen

Im Falle unendlicher Matrizen gilt:

• linke Eigenvektoren werden *nicht* durch Nullen erweitert

•
$$\forall n : e_1(n) = n \Leftrightarrow e_1 = \begin{bmatrix} \cdots & -2 & -1 & 0 & 1 & 2 & \cdots \end{bmatrix}$$

- ullet e_k wird als Polynom erweitert
- Die Kombination, die für endliche Matrizen Eigenvektoren ergibt, ergibt auch unendliche Eigenvektoren

11 – Der Raum
$$V_0=\{\phi(t+n)\}_{n\in\mathbb{R}}$$

Der Raum
$$V_0 = \{\phi(t+n)\}_{n\in\mathbb{R}}$$

Der linke Eigenvektor $y_k M = (\frac{1}{2})^k y_k$ gibt die Kombination von Skalarfunktionen an, die gleich t^k sind:

$$\sum y_k(n)\phi(t+n) = t^k, k = 0, 1, \dots, p-1$$

Darum enthält der von $\{\phi(t+n)\}$ aufgespannte Raum V_0 alle Polynome mit Grad< p!

Beweis: Zu zeigen: Inneres Produkt $G(t)=y_k\Phi_\infty(t)=\sum y_k(n)\phi(t+n)$ ist Vielfaches von t^k

- 1. y_k ist linker Eigenvektor von M
- 2. $\Phi_{\infty}(t) = M\Phi_{\infty}(2t)$ löst die dilation equation

$$\Rightarrow \underbrace{y_k \Phi_{\infty}(t)}_{G(t)} = y_k M \Phi_{\infty(2t)} = \underbrace{\left(\frac{1}{2}\right)^k y_k \Phi_{\infty}(2t)}_{\left(\frac{1}{2}\right)^k G(2t)}$$

 $\Rightarrow G(t)$ ist Vielfaches von t^k

11 – Der Raum
$$V_0=\{\phi(t+n)\}_{n\in\mathbb{R}}$$

Wegen des Einsvektors e_0 folgt:

$$\sum y_0(n)\phi(t+n)=t^0 \text{ mit } y_0=e_0$$

$$\sum \phi(t+n) = 1$$

 $\Rightarrow p$ ist mindestens 1 und da das Wavelet orthogonal zu 1 ist:

$$\int \mathbf{1}w(t)dt = 0$$

dies ist das erste vanishing moment

Wichtig: 1 und t können durch Daubechies' Skalierungsfunktion $\phi(t)=D_4(t)$ erzeugt werden

11 – Der Raum
$$V_0=\{\phi(t+n)\}_{n\in\mathbb{R}}$$

 \Rightarrow Hier hat H(z) den Extrafaktor $\frac{1}{2}[1+\sqrt{3}+1-\sqrt{3})z^{-1}]$ wegen der Doppelshiftorthogonalität

$$\Rightarrow \sum \phi(t-n) = 1, \sum y_1(n)\phi(t+n) = q \cdot t$$

 $\Rightarrow V_0$ (Daubechiesraum) enthält 1 und t und ist orthogonal zu den Wavelets in W_0 :

$$\int w(t)dt = 0 \text{ und } \int tw(t)dt = 0$$

⇒ Daubechiesraum hat 2 vanishing moments

Korollar: Wenn $H(\omega)$ p Nullen bei π hat, haben die zu $\phi(t-n)$ orthogonalen Wavelets p vanishing moments.

Dies sind die *Synthese-Wavelets* $\tilde{w}(t)$:

$$\int_{-\infty}^{\infty} \tilde{w}(t)dt = 0, \int_{-\infty}^{\infty} t\tilde{w}(t)dt = 0, \dots, \int_{-\infty}^{\infty} t^{p-1}\tilde{w}(t)dt = 0$$

Grund: $1, \ldots, t^{p-1}$ sind Kombinationen von $\phi(t-n)$.

Orthogonalität zu diesen Polynomen bedeutet p Nullmomente

- ullet V_0 ist orthogonal zu $ilde{W}_0$ (statt W_0)
- $ightarrow ilde{m{w}}(t)$, nicht w hat p Nullmomente

Aber:

• Bei orthogonalen Beispielen wie Daubechies-Wavelets ist

$$\tilde{W}_0 = W_0$$

$$\tilde{w}(t) = w(t)$$

• Biorthogonaler Fall:

Analysefilter hat \tilde{p} vanishing moments \Leftrightarrow Synthesefilter hat π Nullen bei π

Veranschaulichung: D_4 reproduziert 1 und t exakt auf einem endlichen Intervall

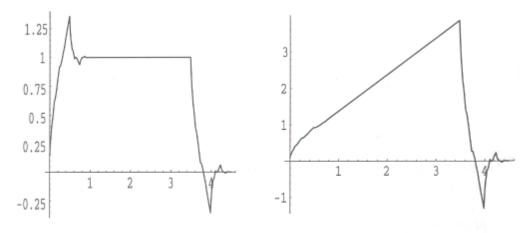


Figure 7.1: A combination of $D_4(t+n)$ can exactly reproduce 1 and t on any interval.

Approximationen durch Funktionen in V_j

- ullet In stetiger Zeit werden Vektoren und Matrizen durch Funktionen in t ersetzt
- $h(k) \xrightarrow{Iteration} \phi(t)$, deren Translationen $1,\dots,t^{p-1}$ reproduzieren können und somit Polynome mit Grad $\leq p$
- ullet Der Träger ist [0,N]
- Wir können Glätte annehmen
- Eine Aufgabe der "harmonischen Analysis"

Exkurs: Harmonische Analysis

- Lehre von Funktionsräumen und -transformationen
- Der Name kommt von der Fouriertransformation
- ightarrow Analysiert f(t) als Summen von Harmonien $e^{i\omega t}$
 - Schlüsselproblem: Verbindung der Eigenschaften von f(t) mit denen der Transformation, insbesondere der Größe der Fourierkoeffizienten)
- ightarrow Da $\sin \omega t, \cos \omega t$ und $e^{i\omega t}$ nicht-lokalen Träger haben, ist der Reihenabbruch kritisch
 - Koeffizientengröße sagt nicht alles aus
 - Nur in euklidischer Norm perfekte Übereinstimmung:

Energie
$$\int |f(t)|^2 dt = \text{Energie} \ \frac{1}{2\pi} \int |\hat{f}(\omega)|^2 d\omega$$

- In anderen L^p -Normen und anderen Funktionsräumen entscheidet $|\hat{f}(\omega)|$ nicht vollständig, ob f(t) zu dem Raum gehört
- ⇒ Wir brauchen die Phase (=Winkelposition)
 - Betrag kann nie komplett sein

13 - Exkurs: Harmonische Analysis

- Für lokale Wavelets ist das anders: Beträge reichen!
- ullet Wir können den Raum von Funktionen f(t) mit einem Raum aus Waveletkoeffizienten b_{jk} treffen!
- Liegt f(t) in L^p , dann liegen die Koeffzienten im diskreten Raum ℓ^p :

$$A \int |f(t)|^p dt \le \sum_{j,k} |b_{jk}|^p \le B \int |f(t)|^p dt$$

 $\bullet\,$ In der Sprache der harmonischen Analysis: " Die Wavelets sind eine unbedingte Basis, wenn p>1 ist"

13 – Exkurs: Harmonische Analysis

- Wenn die Wavelets eine unbedingte Basis sind, dann heißt das $|b_{jk}|$ gibt ausreichende Information (auch ohne Phase)
- ullet Für einfachste Basis L^2 ist die unbedingte Basis eine Riesz-Basis:

$$A \int |\sum a_n \phi(t-n)^2| dt \le \sum |a_n|^2 \le B \int |\sum a_n \phi(t-in)|^2 dt$$

 \Rightarrow Dann trifft die Anforderung aus Kapitel 6.5 an $A(\omega)=\sum a(k)e^{ik\omega}$ auf die Translationsinvarianz der Basis $\phi(t-n)$ zu:

$$\forall \omega : 0 \le A \le A(\omega) = \sum_{-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi + k)|^2 \le B$$

(A, B abhängig von a(k) und den Eigenvektoren a = Ta)

ullet ähnliche Ungleichung für die Waveletbasis wjk(t) und die Koeffizienten b_{jk}

Approximation durch Wavelets: Fehler $f(t) - f_j(t)$

Nochmals: Die Zahl p= Zahl der Nullen bei π gibt an, wie viele Wavelet-/Skalierungsfunktionen zur Approximation von f(t) benötigt werden

- ullet Je glatter die Funktion und je höher p ist, desto schneller gehen die Expansionskoeffizienten gegen 0 und umso weniger davon brauchen wir
- → Zentrales Problem der harmonischen Analyis:

BASIS MIT GUTER APPROXIMATION

UND MIT WENIGEN BASISFUNKTIONEN ^a FINDEN

- Die beste Basis hängt vom Signal ab
- Wir suchen eine Basis für eine ganze Klasse von Signalen
- Für glatte Signale ist die Fouriertransformation zufrieden stellend

 $^{^{}m a}$ z.B. Wavelets oder Harmonien $e^{i\omega}$

Wichtigste Erkenntnis der Wavelettheorie:

Für *stückweise* stetige Funktionen ist eine Waveletbasis besser!

14 – Approximation durch Wavelets: Fehler $f(t)-f_j(t)$

- ullet Raum approximierender Funktion= V_j
- ightarrow Skala $\Delta t = 2^{-j}$
 - ullet Dieser Raum wird aufgespannt durch Skalarfunktionen $\phi(2^jt-k)$ und durch Wavelets $w_{jk}(t)$ für alle Skalen unter j
- ⇒ Wir könnten entweder ein Basis wählen, denn Multiresolution bedeutet

$$V_j = V_0 \oplus W_0 \oplus \ldots \oplus W_{j-1}$$

- Aber: Die Basis ist unwichtiger, denn wir suchen nach der besten Funktion im Raum
- Wenn $H(\omega)$ p Nullen bei π hat, ist jede Funktion mit p Ableitungen approximiert bis zur Ordnung $(\Delta t)^p=2^{-jp}$ durch Projektion $f_i(t)$ in V_i :

$$||f(t) = f_i(t)|| \le C(\Delta t)^p ||f^{(p)}(t)||$$

ausgeschrieben:

$$||f(t) - \sum_{k} a_{k}^{\frac{j}{2}} \phi(2^{j}t - k)|| \le C2^{-jp} ||f^{(p)}(t)||$$

Beispiel: Approximation für Boxfunktionen oder Haarwavelets

- ullet Fehler der Ordnung Δt da p=1
- Die engste Konstante auf dem Intervall $[0,\Delta t]$ ist $a_1=\frac{\Delta t}{2}$
- \bullet Fehler $f(t)-f_0(t)$ auf dem Intervall ist dann $t-\frac{\Delta t}{2}$
- ullet Größter Fehler $\frac{\Delta t}{2}$ bei t=0
- \bullet Der Fehler in L^2 -Norm ist

$$\left| \left| t - \frac{\Delta t}{2} \right| \right| = \sqrt{\frac{1}{\Delta t} \int_0^{\Delta t} \left(t - \frac{\Delta t}{2} \right)^2 dt} = \frac{\Delta t}{2\sqrt{3}}$$

15 – Beispiel: Approximation für Boxfunktionen oder Haarwavelets

- ullet Die Potenz von Δt ist das Wichtigste bei der Fehlerabschätzung
- C kann bei gewissen Funktionen groß werden (und somit wichtiger)

Hauptsache ist:

- $\{\phi(t+k)\}$ kann lokal $1\dots t^{p-1}$ produzieren, d.h. wir treffen den Anfang der Taylorreihe
- ullet Der Fehler ist dann die Summe der fehlenden Glieder ∂
- \Rightarrow Genau das produziert den $(\Delta t)^p f^{(p)}(t)$ in der Fehlerabschätzung

Die STRANG-FIX-Condition

• Die Anforderung an $H(\omega)$, p Nullen bei π zu haben, führt zu folgender Anforderung an $\hat{\phi}$ (Fouriertransformation von ϕ):

$$\hat{\phi}(\omega)$$
 muss Nullen der Ordnung p bei allen Frequenzen
$$\omega = 2\pi n, n \neq 0 \text{ haben}$$

Dies ist die Strang-Fix-Condition, benannt nach Gilbert Strang und George Fix Verbindung zu Nullen von $H(\omega)$: $\hat{\phi}=\prod_1^\infty H\left(\frac{\omega}{2^j}\right)$ mit $\omega=2\pi$ schreiben wir $n=2^jq$, q gerade

- $\Rightarrow (j+1)$ ter Faktor im unendlichen Produkt ist $H(2\pi n/2^{j+1}) = H(q\pi)$
- \Rightarrow Null p-ter Ordnung von $H(\omega), \omega=\pi$ führt zu Null p-ter Ordnung von $\hat{\phi}$ bei $\omega=2\pi n$
- \Rightarrow Strang-Fix-Bedingung für $\hat{\phi}(t) \Longleftrightarrow A_p$ auf $H(\omega)$

Die Wahl von p

- $\bullet\,$ Ein "gutes" p stabilisiert die Iteration, aber ohne den Lowpass-Filter zu überanspruchen
- \bullet Oft reichen zwei Ableitungen für $\phi(t)$, was ab $p\approx 4$ eintritt
- ullet Andere Designer akzeptieren kleinere p

Der Abfall der Waveletkoeffizienten

- ullet Die Ordnung p erlaubt es, Waveletkoeffizienten schnell zu verkleinern
- → passiert bei der Fouriertransformation automatisch

ABER: Ein Funktionssprung und Schrumpfung wird durch $\frac{1}{k}$ begrenzt

- ⇒ Bei Wavelets greift die Multiresolution
- \Rightarrow Wenn f(t) p Ableitungen besitzt, fallen die Koeffizienten wie $\frac{1}{2^{jp}}$ ab:

$$|b_{jk}| = \left| \int f(t)w_{jk}(t)dt \right| \le C2^{-jp} \left| \left| f^{(p)}(t) \right| \right|$$

- erstes vanishing moment heißt $\int_{-\infty}^{\infty} w(t)dt = 0$
- unendliches Integral ist kompakt ungleich 0:

$$I_1(t) = \int_{-\infty}^t w(u) du$$
nur auf $[0,N]$ ungleich Null

- $I_1(t)$ ist begrenzt und hat nur endliche Energie
- Für Haar-Wavelets ist dies die Hutfunktion

Beweis: Partielle Integration liefert wegen des vanishing moments:

$$b_{jk} = 2^{-j} \int_{-\infty}^{\infty} f'(t) 2^{j/2} I_1(2^j t - k) dt = O(2^{-j})$$

ullet Schritte $I_1(t), I_2(t), \dots, I_p(t)$ führen zu

$$|b_{jk}| = \left| 2^{-jp} \int_{-\infty}^{\infty} f^{(p)}(t) 2^{j/2} I_p(2^j t - k) dt \right| \le C 2^{-jp} \left| \left| \int f^{(p)}(t) \right| \right|$$

- Auch wenn f(t) mehr Ableitungen besitzt, können wir nicht weiter machen, denn $I_p(t)\big|_{-\infty}^{\infty} \neq 0!$
- \Rightarrow sonst wäre $p = p + 1 \Rightarrow$ Widerspruch
 - $I_{p+1}(t)$ ist konstant $\neq 0$ für große $t \Rightarrow$ unendliche Energie
 - \bullet Für Haar-Wavelets: p=1: $f(t)-f(t-2^j)$ Liefert die Integration hier die direkte Abschätzung $|b_{jk}|=O(2^-j)$
 - ullet Generell: Teilweises Integrieren führt zu f'(t) mal Hutfunktion I_1 mal 2^{-j}

Samplewerte vs. Expansionskoeffizienten

Typisches Vorgehen:

Funktion x(t) \rightarrow Samples $\mathbf{x}(n)$ \rightarrow Eingabe in die Filterbank. Ist das legal?

NEIN, ES IST EIN WAVELETVERBRECHEN

- Einige können sich nicht vorstelllen, so vorzugehen, andere nicht, es nicht zu tun
- Bequem:
 - Vielleicht kennen wir x(t) nicht; vielleicht keine Kombination von $\phi(t-k)$
 - Die Berechnung der wahren Koeffizienten dauert zu lange
- Aber
 - Das "Verbrechen" kann nicht inbeachtet bleiben
 - Wir nehmen hier eine spezielle stetige Funktion an
 - Der Pyramidenalgorthmus arbeitet auf $\mathbf{x}(n)$ als ob es Koeffizienten der zu Grunde liegenden Funktion währen:

$$x_s(t) = \sum \mathbf{x}(n)\phi(t-n)$$

19 – Samplewerte vs. Expansionskoeffizienten

- Korrekt, wenn $\phi(k) = \delta(k) \Rightarrow$ einziger Term bei t = n ist $\mathbf{x}(n)$
- Dies trifft natürlich auf die meisten Funktionen nicht zu

Mögliche Lösung:

Bestimme
$$a_{int}(k)$$
 aus $\mathbf{x}(n) = \sum a_{int}(k)\phi(k-n)$

wir erhalten eine konstant-diagonale Toeplitz-Matrix mit Einträgen $n,k=\phi(-kn)$ — wir invertieren einen FIR-Filter $\sum \phi(k)e^{-i\omega}$

ightarrow Dann sind die Koeffizenten inneres Produkt $\left\langle x(t-k), \tilde{\phi(t)} \right\rangle$:

$$a(k) = \int x(t)\hat{\phi}(t-k)dt \Rightarrow a_q(k) = \sum \mathbf{x}(n)\tilde{\phi}(n-k)$$

(Für Daubechies: $\tilde{\phi} = \phi$ wegen Orthogonalität)

19 – Samplewerte vs. Expansionskoeffizienten

ullet Da außer sinc-Wavelets und Dualen zu Splines die Wavelets kompakten Träger haben, lautet eine vorsichtige Wahl für einen idealen Vorfilter

$$x_q(t) = \sum a_q(k)\phi(t-k)$$

- VORSICHT: In stetiger Zeit passt die Synthese über eine Summe zur Analysis mit Integral. Im disketen Fall wird das Integral zur Summe und die Inverse ist nicht die Inverse der Matrix
- ABER: Die Näherung ist korrekt für Polynome bis Grad $p(\tilde{p})$:

$$\sum_{-\infty}^{\infty} n^r \phi(n) = \int_{-\infty}^{\infty} t^r \phi(t) dt, r < p$$

Für die linke Seite gilt nach Poissons-Summenformel:

$$\sum_{-\infty}^{\infty} n^r \phi(n) = \sum_{-\infty}^{\infty} i^r \hat{\phi}^{(r)}(2\pi k)$$

- ullet Dann sind auf der rechten Seite alle Terme 0 für k
 eq 0 nach Strang-Fix
- \Rightarrow Daraus folgt die Zusicherung für Polynome mit Grad< p

Empfehlung der Buchautoren

 $\mathbf{x}(n)$ über die inneren Produkte in Koeffizienten konvertieren, dann filtern, dann nachfiltern um den Samplewert wiederherzustellen Andere Möglichkeiten:

- x(t) Band-limitieren nach Samplingtheorem $x(t) = \sum sinc(t-n)x(n)$
- \Rightarrow Projektion des limitierten x(t) auf V_0 ergibt $\sum a_{bl}(k)\phi(t-k)$ (Flandrin-Verfahren)
 - $\mathbf{x}(n)$ als Durchschnittswerte ansehen \to Projektion auf $V_0 \Rightarrow \sum a_{ave}(k)\phi(t-k)$

Es gibt keine eindeutige Antwort aber die Samples düfen nicht einfach durch die Filterbank geschickt werden!

Quellen

- G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, 1997.
- Abb. S. 12 Schülerduden Mathematik II, Dudenverlag, Mannheim, 1991